INTRODUCTION

Dietary fiber can be defined as: all the components of food that are not digested by enzymes in the human digestive tract to produce smaller molecular compounds which are absorbed into the blood stream (AOAC, 2003). Dietary fibers are usually divided into two classes: water insoluble mainly (cellulose, lignin and some hemicellulose) and water soluble (mainly pectins, gums, some hemicellulose and others) (Thebaudin et al., 1997; Gorinstein et al., 2001). Dietary fiber constituents are found mainly in the cell wall of plant tissues (Sila et al., 2009). On general, fruits and vegetables are rich in water soluble fibers, whereas generally fibers contain more water insoluble fibers (cellulose and hemicellulose) (Figuerola et al., 2005). The main function of dietary fibers is to change the nature of gastrointestinal tract content and exceed the rate of nutrient absorption (Eastwood and Kritchevsky, 2005). Water soluble dietary fiber (mainly pectin) usually fermented in the colon which caused normalization of the lipids and produces short chain fatty acids, as by products, with wide range of physiological activites which became probiotic materials (Bourquin et al., 1993; Weickert and Pfeiffer, 2008). Moreover, dietary fiber can reduce the absorption of bile acids and this action caused a reduction in cholesterol level and decrease the blood diabetes risk (Anderson et al., 2009). Diets rich in fibers can lower glycemia (in men) (Kiehm et al. 1976 and Jenkins et al. 1976). Moreover it was found that people who consume vegetables as a major portion of dietary fiber diets along with lower calories from saturated fat and animal products are at low risk of coronary diseases and cancer (Kahlton et al., 2008). Vegetables are good source of dietary fiber, it is required that vegetables should use frequently to provide all the essential nutrients, includes dietary fiber for normal body functions (Hanif et al., 2006; Alshuaibani, 2013).

Broccoli and cauliflower (from Brassicaceae family) are good source of vitamins, minerals, crude fiber, polyphenols as well as they have high antioxidant power (Mansour et al., 2015). In Egypt cauliflower is cultivated in wide area while broccoli is recently cultivated in limited area, therefore this study was carried out to evaluate and compare the content of dietary fiber fractions as an important and effective component in raw broccoli and cauliflower also the effect of steaming process on them. Moreover, the biological assay of raw and steamed broccoli and cauliflower was also carried out.

MATERIALS AND METHODS

Materials

Broccoli (Brassica oleracea var. italic) was purchased from a farm in Housh Eisaa (El Behira Governorate, Egypt). Cauliflower (Brassica oleracea var. botrytis) was purchased from local market in Alexandria. All chemical used for study were purchased from Sigma (St Louis, MO, Germany).

Methods

Preparation of broccoli and cauliflower samples

Each of broccoli and cauliflower samples was washed and then was cut into flowers of 2-3 cm length from the top of the stem (florets). Then each of broccoli and cauliflower florets were divided into two parts, one of them was used as it is without any treatment which represented the control sample (raw sample) and another part was steamed as following:-

Florets samples (broccoli and cauliflower) were steamed on boiling water vapor for 12 min and cooled in iced water to prevent over cooking. According to previous study (Mansour et al., 2015) it was found that steaming of broccoli and cauliflower for 12 min was more preferred by panelists so it was chosen to complete this study compared with raw broccoli and cauliflower.

Determination of dietary fiber:-

Neutral detergent fibres (NDF) were determined according to Van Soest et al. (1991) using heat-stable α-amylase and sodium sulphite. Acid detergent fibres (ADF)
were determined according to Goering and Van Soest (1970). Acid detergent lignin (ADL) was analysed by solubilisation of cellulose with sulphuric acid (720 ml/l) according to the method of Van Soest (1973). The fibre measurements were sequentially performed by using the ANKOM 220 Fibre Analyser unit (ANKOM Technology Corporation, Macedon, NY, USA) using the same sample in filter bags and expressed exclusive of residual ash. Total pectin was determined by the method Ranganna (1977). Cellulose and hemicellulose were calculated as follows:-

\[
\% \text{ Cellulose} = \frac{\text{ADF} - \text{ADL}}{\text{ADF}} \\
\% \text{ Hemicellulose} = \frac{\text{NDF} - \text{ADF}}{\text{ADF}}
\]

Biological assay

Animals and experimental design

Samples of broccoli and cauliflower used in the biological evaluation were freeze dried until approximately 20% moisture content using Labconco freeze dry system LyphLLock 4.5. The samples were ground by mill and added to the basal diet. Thirty male rats (Sprague Dawley) weighing 100±5 g were obtained from Institute of Graduate Studies and Research, Alexandria, Egypt. The rats caged individually and were fed by the basal diet for one week before the beginning of the experiment. Five groups, six rats each, were fed on one of the following experimental diets for 40 days.

- **G 1**: was fed on basal diet (control).
- **G 2**: was fed on basal diet + 20% raw broccoli.
- **G 3**: was fed on basal diet + 20% steamed broccoli.
- **G 4**: was fed on basal diet + 20% raw cauliflower.
- **G 5**: was fed on basal diet + 20% steamed cauliflower.

Table 1. Composition of the basal diet

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn starch</td>
<td>70</td>
</tr>
<tr>
<td>Protein source</td>
<td>10</td>
</tr>
<tr>
<td>Cotton seed oil</td>
<td>10</td>
</tr>
<tr>
<td>Salt mixture</td>
<td>4</td>
</tr>
<tr>
<td>Vitamin mixture</td>
<td>1</td>
</tr>
<tr>
<td>Choline chloride</td>
<td>1</td>
</tr>
<tr>
<td>Non-nutritive cellulose</td>
<td>4</td>
</tr>
</tbody>
</table>

The feed conversion efficiency (FCE)

The feed conversion efficiency (FCE) was determined according to Ndome et al. (2011). It was calculated using the following equations:

\[
\text{Feed conversion efficiency (FCE)} = \frac{\text{Weight gain (g)}}{\text{Diet fed (g)}} \times 100
\]

The protein efficiency ratio (PER)

The protein efficiency ratio (PER) and adjusted PER were determined according to AOAC method (2003) using the following equations:

\[
\text{Protein efficiency ratio (PER)} = \frac{\text{Weight gain}}{\text{Protein intake}}
\]

\[
\text{Adjusted PER} = \text{PER} \times 2.5
\]

Blood serum analysis

A blood sample from each animal was taken at the end of the experiment after 12 hours of fasting. The rats were anesthetized and blood samples were taken and placed into a dry clean centrifugal glass tube with 0.2 ml heparin as anticoagulant and then left for 10 min at ambient temperature. The tubes were centrifuged at 8000 rpm for 10 min to separate the serum and the plasma. The clean supernatant serum was analyzed immediately.

The serum was used for the determination of triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDLC), low-density lipoprotein cholesterol (LDLC), and very low density lipoprotein cholesterol (VLDLC) according to SYNCHRON LX system chemistry information manual (2000) as follow:

Blood serum triglycerides

The blood serum triglycerides level was determined using the spectrophotometric method, where 300 µL of reactive reagent solution was added to 3.0 µL of the sample and the formed colored compound was measured at 520 nm.

Blood serum total cholesterol

The blood serum total cholesterol was determined using the spectrophotometric method, where 300 µL of reactive reagent solution was added to 3 µL of the sample and the formed colored compound was measured at 520 nm.

Blood serum high and low density lipoprotein cholesterol

The blood serum high density lipoprotein cholesterol (HDLC) was determined using the spectrophotometric method using unique detergent to solubilize only the HDL particles. Amount of 280 µL reactive reagent solution was added to 3 µL of sample and the formed colored compound was measured at 560 nm.

The blood serum low-density lipoprotein cholesterol (LDLC) was calculated by the following equation:

\[
\text{LDLC} = \frac{\text{Total cholesterol} - \text{HDL} - \text{Triglycerides}}{5}
\]

The blood serum very low density lipoprotein cholesterol (VLDLC) was calculated using the following equation:

\[
\text{VLDLC} = \frac{\text{Triglycerides}}{5}
\]

Blood serum glucose

The blood serum glucose was determined after enzymatic oxidation in the presence of glucose oxidase according to Trinder (1969). The formed hydrogen peroxide reacts under catalysis of peroxidase with phenol and 4-amino phenazone to a red-violet quinoneimine dye as indicator. The determination investigated at 500 nm against blank reagent.

Statistical analysis

Data were statistically analyzed using Randomized Complete Block Design (R.C.B.D). Comparisons between means were carried out using least significant difference at 0.05 probability level (LSD 0.05) according to Steel and Torrie (1980).
RESULTS AND DISCUSSION

Dietary fiber in raw and steamed broccoli and cauliflower

Dietary fiber which is very important from the nutritional point of view are classified into water insoluble (cellulose, lignin, some of hemicellulose) which represent NDF, ADF and ADL and water soluble (mainly pectin and gums) (Thebaudin et al., 1997; Grigelmo-Miguel et al., 1999).

Table 2 shows the percentages of natural detergent fibers (NDF), acid detergent fibers (ADF), acid detergent lignin (ADL), cellulose and hemicellulose in raw and steamed broccoli and cauliflower on dry weight basis. It is obvious that the main component among all the fractions was NDF in both raw broccoli and cauliflower, meanwhile raw broccoli had higher content of NDF (37.64%) than raw cauliflower (32.70%). Also ADF% was higher in raw broccoli (31.99%) than raw cauliflower (26.71%). On the other hand no significant difference was noted in acid detergent lignin (ADL) in raw broccoli and raw cauliflower, meanwhile steamed cauliflower had higher content of ADL than steamed broccoli. Cellulose was presented in higher percentage in raw broccoli (15.96%) compared with raw cauliflower (9.82%) but steaming process decreased cellulose content in both studied vegetables. The results also show that there was no significant difference observed in hemicellulose content between raw broccoli and raw cauliflower but after steaming broccoli possessed the highest content of hemicellulose. These results are in accordance with those of Mukherjee and Mishra (2012) and Madhu and Kochhar (2014). The results in the Table also represented the effect of steaming on dietary fiber fractions of broccoli and cauliflower. It could be concluded that steaming process resulted in barely significant reduction in NDF %, ADF %, and ADL% in both vegetables, yet the amounts of these dietary fibers fractions are still higher. The reduction was more obvious in steamed broccoli than in cauliflower. Cellulose content was decreased in steamed broccoli and cauliflower while hemicellulose was increased in both vegetables after steaming. This different trend in the hemicellulose content may be due to the redistribution of dietary fiber fractions. In accordance with our results Brandt et al. (1984) reported that cooking decreases the dietary fibers content in vegetables. Also, Kahlon et al. (2008) stated that dietary fiber decreased in steamed broccoli and spinach.

Table 2. Dietary fiber fractions (%), in raw and steamed broccoli and cauliflower (on dry weight basis)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Neutral detergent fibers (NDF) %</th>
<th>Acid detergent fibers (ADF) %</th>
<th>Acid detergent lignin (ADL) %</th>
<th>Hemi cellulose %</th>
<th>Cellulose %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw broccoli</td>
<td>37.64±0.10</td>
<td>31.99±0.10</td>
<td>16.03±0.09</td>
<td>5.65±0.1</td>
<td>15.96±0.06</td>
</tr>
<tr>
<td>Steamed broccoli</td>
<td>35.81±0.10</td>
<td>20.97±0.40</td>
<td>10.38±0.11</td>
<td>14.84±0.1</td>
<td>10.89±0.09</td>
</tr>
<tr>
<td>Raw cauliflower</td>
<td>32.70±0.10</td>
<td>26.71±0.10</td>
<td>16.89±0.13</td>
<td>5.99±0.1</td>
<td>9.82±0.07</td>
</tr>
<tr>
<td>Steamed cauliflower</td>
<td>32.11±0.1</td>
<td>23.85±0.05</td>
<td>15.37±0.13</td>
<td>8.26±0.07</td>
<td>8.48±0.06</td>
</tr>
</tbody>
</table>

Means followed by the same letter (s) in column are not significantly different at (p≤ 0.05)

The previous results showed that in spite of the limited reduction in dietary fiber fractions after steaming, steamed broccoli and cauliflower still contained a considerable amount of dietary fiber fractions. Figuerole et al. (2005) reported that dietary fiber had high value of water retention capacity (WRC). This hydration property refers to its ability to retain water with its matrix. Therefore it could decrease the rate of glucose absorption from the intestine which is very useful in the case of diabetes mellitus patients. Moreover dietary fiber are known to bind with the bile acids in the small intestine and they remove them from the body with stools, this action stimulates the liver to increase cholesterol uptake from the circulation and to replenish the bile acid supply. As a result the concentration of serum total and LDL cholesterol are reduced (Pereira and Pins, 2000; Kahlon et al., 2008 and Salem et al., 2013).

Pectin is a water soluble dietary fiber fraction, it can absorb water turning it into a gel-like mush (Silas et al., 2009). Table 3 represents the total pectin content in raw and steamed broccoli and cauliflower. Most of observed differences were statistically significant. Raw cauliflower had higher level of total pectin content (30.38%) than raw broccoli (27.30%). Moreover, it could be observed that steaming resulted in limited reduction in pectin content in both steamed vegetables. These results are in accordance with those of Borowski et al. (2015), who studied the effect of various thermal methods on pectic compounds in broccoli and they stated that steamed broccoli had greatest firmness and the highest pectic content among all the used treatments. High pectin diet reduces blood glucose level (Stassee-Wolthuis et al., 1980; Madhu and Kochhar, 2014).

Table 3. Pectin content in raw and steamed broccoli and cauliflower (on dry weight basis)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pectin (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw broccoli</td>
<td>27.30±0.13</td>
</tr>
<tr>
<td>Steamed broccoli</td>
<td>26.10±0.33</td>
</tr>
<tr>
<td>Raw cauliflower</td>
<td>30.38±0.10</td>
</tr>
<tr>
<td>Steamed cauliflower</td>
<td>28.70±0.11</td>
</tr>
</tbody>
</table>

Means followed by the same letter (s) in column are not significantly different at (p≤ 0.05)

Biological assay

Effect of raw and steamed broccoli and cauliflower diets on weight gain, PER and FCE

Table (4) shows the effect of feeding rates on raw and steamed broccoli and cauliflower diets on their weight gain, adjusted protein efficiency ratio (Adj. PER) and fed conversion efficiency (FCE) compared to basal diet. The results indicate that the least weight gain was for the group fed on raw broccoli (50.00 g) followed by the group fed on raw cauliflower (61.67 g) while the highest weight gain was for those who fed on basal diet. The results also show that the steaming process caused an increment in the weight gain of the group fed on steamed broccoli or cauliflower. Moreover the data in Table (4) indicate that the highest value of Adj. PER (2.5) was noticed for the basal diet followed by steamed cauliflower and broccoli being (2.18 and 2.05), respectively. Raw broccoli had the lowest value
Mansour, A. A. et al.

for Adj. PER (1.63) among all the treatments. The same trend was noticed for feed conversion efficiency (FCE), where raw broccoli and cauliflower exhibited the lowest values for FCE than steamed ones, but the highest value was for the basal diet. The increment in the weight gain, Adj. PER and FCE for steamed vegetables are due to the fact that cooking resulted in an increase in the digestibility of the plant foods (Shekib et al., 1992). Obtained results are in agreement with the findings of Alsuhaihani (2013) who found that feeding rats on broccoli powder and aqueous extracts showed significant lower values of body weight and FCE comparing to the basal diet. The results of table (4) indicate that consumption of broccoli or cauliflower could be useful for obesity persons. Soluble or insoluble dietary fibers in plants could help people to stay at healthy weight (Figueroa et al., 2005).

Table 4. Effect of broccoli and cauliflower diets on the PER, adjusted PER and FCE

<table>
<thead>
<tr>
<th>Food group</th>
<th>Weight gain (g)</th>
<th>PER</th>
<th>Adjusted PER</th>
<th>FCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal diet</td>
<td>80.00±1.30</td>
<td>2.38±0.12</td>
<td>2.50±0.04</td>
<td>23.80±0.10</td>
</tr>
<tr>
<td>Raw broccoli</td>
<td>50.00±1.70</td>
<td>1.56±0.30</td>
<td>1.63±0.07</td>
<td>15.65±0.08</td>
</tr>
<tr>
<td>Steamed broccoli</td>
<td>65.00±1.70</td>
<td>1.96±0.12</td>
<td>2.05±0.10</td>
<td>19.60±0.08</td>
</tr>
<tr>
<td>Raw cauliflower</td>
<td>61.67±2.10</td>
<td>1.85±0.17</td>
<td>1.94±0.06</td>
<td>18.50±0.11</td>
</tr>
<tr>
<td>Steamed cauliflower</td>
<td>72.50±1.77</td>
<td>2.08±0.09</td>
<td>2.18±0.09</td>
<td>20.85±0.06</td>
</tr>
</tbody>
</table>

Means followed by the same letter (s) in column are not significantly different at (p ≤ 0.05)

Effect of raw and steamed broccoli and cauliflower diets on lipid profile

Table 5 represents the data of total cholesterol (TC) in the serum of rats fed for 40 days on basal diet, raw broccoli, raw cauliflower, steamed broccoli and steamed cauliflower. The results indicate that broccoli and cauliflower diets (raw or steamed) resulted in significant reduction in TC value compared to the basal diet. The decrements were 22.11, 14.42, 25.00 and 24.03%, for raw and steamed broccoli and cauliflower respectively compared to the basal one. Low density lipoprotein cholesterol (LDL- C) and very low density lipoprotein cholesterol (VLDL- C) were also significantly decreased in the blood serum of the rats which were fed on raw and steamed vegetables diets compared to the basal diet. In contrast, the high density lipoprotein cholesterol (HDL-C) increased by 13.33, 23.01% in the blood serum of the rats fed on raw and steamed broccoli and by 15.21, 18.75% for cauliflower diets compared to basal diet. It was found also that TG values were significantly reduced in the blood serum of the rats fed on broccoli or cauliflower diets by 19.09, 26.01, 32.45 and 30.78% for raw and steamed broccoli and cauliflower respectively, compared to the basal diet. These results are in agreement with the findings of Cerda et al. (1994) and Jenkins et al. (1997), whereas they reported that the lipid risk factor for cardiovascular diseases for healthy volunteers were significantly reduced after 2 weeks of feeding on high vegetable diets including broccoli and cauliflower, in comparison with control diet. They also found that LDL was reduced by 37% for those fed in high vegetable diets. Moreover, Salem et al., (2013) stated that feeding the experimental animals on cauliflower diet caused significantly reduction in the values TC, LDL- C, VLDL-C and TG in the animal's blood serum after 8 weeks of feeding compared to the control group which was fed on basal diet.

Table 5. Total serum cholesterol, cholesterol fractions and triglycerides (mg/dL) of rats fed on broccoli and cauliflower

<table>
<thead>
<tr>
<th>Food group</th>
<th>Total cholesterol (TC)</th>
<th>Reduction %</th>
<th>HDL-C *</th>
<th>Increment %</th>
<th>LDL-C *</th>
<th>Reduction %</th>
<th>VLDL-C *</th>
<th>Reduction %</th>
<th>Triglycerides (TG)</th>
<th>Reduction %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal diet</td>
<td>104.00±2.0</td>
<td>---</td>
<td>39.00±0.30</td>
<td>---</td>
<td>48.24±2.26</td>
<td>---</td>
<td>16.76±0.76</td>
<td>---</td>
<td>83.80±2.0</td>
<td>---</td>
</tr>
<tr>
<td>Raw broccoli</td>
<td>81.00±1.50</td>
<td>22.11</td>
<td>45.00±1.25</td>
<td>13.33</td>
<td>22.44±1.75</td>
<td>53.48</td>
<td>13.56±0.79</td>
<td>19.09</td>
<td>67.80±1.80</td>
<td>19.09</td>
</tr>
<tr>
<td>Steamed broccoli</td>
<td>89.00±1.64</td>
<td>14.42</td>
<td>50.66±1.11</td>
<td>23.01</td>
<td>25.94±0.45</td>
<td>46.22</td>
<td>12.40±0.60</td>
<td>26.01</td>
<td>62.00±1.30</td>
<td>26.01</td>
</tr>
<tr>
<td>Raw cauliflower</td>
<td>78.00±1.50</td>
<td>25.00</td>
<td>46.00±0.25</td>
<td>15.21</td>
<td>20.68±0.19</td>
<td>57.13</td>
<td>11.32±0.20</td>
<td>32.45</td>
<td>56.60±0.13</td>
<td>32.45</td>
</tr>
<tr>
<td>Steamed cauliflower</td>
<td>79.00±1.23</td>
<td>24.03</td>
<td>48.00±0.17</td>
<td>18.75</td>
<td>19.40±0.17</td>
<td>59.78</td>
<td>11.60±0.11</td>
<td>30.78</td>
<td>58.00±0.80</td>
<td>30.78</td>
</tr>
</tbody>
</table>

Means followed by the same letter (s) in column are not significantly different at (p ≤ 0.05)

1: The result is average of six animals
2: LDL-C: Low density lipoprotein cholesterol
3: * HDL-C: High density lipoprotein cholesterol
4: **VLDL-C: Very low density lipoprotein cholesterol

** Effect of raw and steamed broccoli and cauliflower diets on serum glucose**

Total serum glucose of experimental rats was determined and given in Table (6). The results in the Table show that feeding rats on broccoli or cauliflower diets resulted in significant reduction in their serum blood glucose level compared with the basal diet. The serum blood glucose of the rats fed on basal diet was 90.5 mg/dl and reduced by 20.99 and 12.92 % for the rats fed in raw or steamed broccoli diets, respectively. Also, it reduced by 20.22 and 13.65% in the serum blood of those fed on raw or steamed cauliflower. These results are in accordance with those obtained by Rosedale et al. (2009) whereas they studied the effect of broccoli and cauliflower diets on human blood sugar serum and they found that fast serum blood glucose value was decreased compared to basal diet. Moreover, Post et al. (2012) found a statistically significant improvement in fasting blood glucose when an increase in dietary fiber was used as an intervention in patients with type 2 diabetes mellitus. The biological evaluation were confirmed by the results of Tables (2) and (3) which show that both broccoli and cauliflower (raw and steamed) had high amount of insoluble and soluble dietary fiber which indirectly inhibit both hepatic synthesis of cholesterol fractions and the level of serum blood glucose. So it could be advice to consume broccoli or cauliflower frequently as
they are good source of essential nutrients (Mansour et al., 2015) and high amounts of dietary fibers (Hanif et al., 2006). Dietary Reference Intake for Japanese (2010) of dietary fiber (g/day) for children (10-13 yr) is 19.31, for adults male (14-50 yr) is 38, for adult woman (14-50 yr) is 25-26 and 28-29 for pregnant or lactating women.

Table 6. Total serum glucose (mg/dL) of rats fed on broccoli and cauliflower compared to the basal diet

<table>
<thead>
<tr>
<th>Food group</th>
<th>FBS</th>
<th>Reduction %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal diet</td>
<td>90.50±0.50</td>
<td>-----</td>
</tr>
<tr>
<td>Raw broccoli</td>
<td>71.50±0.70</td>
<td>20.99</td>
</tr>
<tr>
<td>Steamed broccoli</td>
<td>78.80±0.40</td>
<td>12.92</td>
</tr>
<tr>
<td>Raw cauliflower</td>
<td>72.20±0.17</td>
<td>20.22</td>
</tr>
<tr>
<td>Steamed cauliflower</td>
<td>78.14±0.16</td>
<td>13.65</td>
</tr>
</tbody>
</table>

Means followed by the same letter (s) in column are not significantly different at (p≤ 0.05)

1: The result is average of six animals FBS: Fasting blood sugar

CONCLUSION

From the data in present study it could be concluded that raw and steamed broccoli and cauliflower contained substantial amounts of dietary fiber (soluble or insoluble). Broccoli had higher level of most of the dietary fiber fractions compared to cauliflower. The biological assay rats revealed that addition of raw and steamed broccoli or cauliflower in rats diets could help in loss weight, reducing blood serum TC, LDL-C, VLDL-C, TG and increasing of HDL-C. Also glucose level was reduced.

REFERENCES

Mansour, A.A. et al.

The implementation of the brokoli and the crude protein of the milk on the brokoli and bok choy milk lasted 12 days. As a result, the effects of brokoli and bok choy milk are reduced on FCE and also other things. Pectin treatment (milk and milk) reduced the rumen fermentation and the rate of the brokoli and bok choy milk. The crude protein content in the rumen of the brokoli and bok choy milk is lower than those of the control. The crude protein content in the rumen of the brokoli and bok choy milk is lower than those of the control.

The effects of brokoli and bok choy milk are reduced on FCE and also other things. Pectin treatment (milk and milk) reduced the rumen fermentation and the rate of the brokoli and bok choy milk. The crude protein content in the rumen of the brokoli and bok choy milk is lower than those of the control. The crude protein content in the rumen of the brokoli and bok choy milk is lower than those of the control.

The effects of brokoli and bok choy milk are reduced on FCE and also other things. Pectin treatment (milk and milk) reduced the rumen fermentation and the rate of the brokoli and bok choy milk. The crude protein content in the rumen of the brokoli and bok choy milk is lower than those of the control. The crude protein content in the rumen of the brokoli and bok choy milk is lower than those of the control.

The effects of brokoli and bok choy milk are reduced on FCE and also other things. Pectin treatment (milk and milk) reduced the rumen fermentation and the rate of the brokoli and bok choy milk. The crude protein content in the rumen of the brokoli and bok choy milk is lower than those of the control. The crude protein content in the rumen of the brokoli and bok choy milk is lower than those of the control.