Effect of Fermented Kefir Consumption Mixed with Different Cereals Formula on Obese Rats

Abd El Ghany, M. A.*; Lobna A. Shelbaya; and Fawzia R. Abd-El hameed

Department of Home Economics, Faculty of Specific Education, Mansoura University, Egypt

ABSTRACT

This study investigates the ant obesity effects of fermented Kefir and germinated cereals mixed with fermented Kefir on high fat diet induced obese rats. 25 male rats each weighting 75±3 gram were apportioned to five groups. Group 1 is the negative group. The rest rats were received high saturated fats (34%) in diet for 56 days to become obese rats. Obesity was confirmed by elevation of serum lipid profile and body weight. Group 2 is control +ve group which fed on high fat diet. Kefir group which fed on high fat diet supplemented with kefir at dose of 4ml /rat/day orally, formula 1 group which fed on high fat diet with 20 % of formula 1 (wheat, barley, maize and millet mixture powder melt in 200 ml kefir) and formula 2 group which fed on high fat diet with 20 % of formula 2 (wheat, barley, maize and oat mixture powder melt in 200 ml kefir) for four weeks. This study resulted in a marked improvement of nutritional indicator as kefir Formula 1 and 2 group administration could lower nutritional indicators. However, the administration of kefir, formula 1 and formula 2 could reduce lipids parameters. Consumption of kefir significantly reduced the serum leptin, glucose, insulin resistance and progesterone levels but increased insulin and testosterone levels while consumption of formula 1 and 2 could lower serum leptin and insulin resistance and elevate progesterone and testosterone levels compared to control (+ve) group. It is concluded that germinated cereals mixed with kefir could manage treat obesity.

Keywords: Obesity, Kefir, Nutritional and Lipids Parameters, Hormones, Rats

INTRODUCTION

Obesity has become a serious problem in the past few years. It is linked to accumulation body fat with over growth and the amplification of adipose tissue because of a maladjustment between energy consumption and expenditures (Must et al., 1999). Obesity is often associated with a variety of chronic diseases such as hyperlipidemia, diabetes mellitus, hypertension coronary artery disease, and certain cancers (Kopelman 2000). Although a number of antiobesity pharmacological drugs to the treatment of obesity, more recent trials have focused on screening natural sources that could reduce body weight with minimal side effects (Mayer et al., 2009).

The most popular cereals around the world are wheat, maize, barley and oat that have many functional nutrients and related to reduction the risk factors of many diseases. Whole wheat and maize have influence in resistance atherosclerosis, diabetes, hyperlipidemia, and obesity due to contain effective nutrients and phytochemicals (Higgins 2004 and Fred et al., 2013). Also, barley is an old grain in the Middle East. The renewed interest comes from its ability to produce positive effects on diseases such as glycemic responses after eat, blood lipids and blood pressure (Ames and Rhymer, 2008). Barley has relation to satiety due to its low Glycemic index values and high fiber content. Not only that but also there are synergistic effect between barley β-glucan and reducing blood cholesterol (Shatwan et al., 2013).

Oats and millet have an ability to prevent massive body weight loss seem to be due to its ability to reduce hyperglycemia and resistance obesity (Zdunczyk et al., 2006, Queeman et al., 2007, and Thilagavathi and Kanchana 2017). Germination process increases the bioactive compounds such as protein, lipid and carbohydrate through modifying its chemical composition (Rumiyati et al., 2012).

Kefir consists of bacteria and yeast species that have symbiotic metabolic activity. It is fermented milk that has an acidic flavor, yeasty aroma, creamy consistency (Witthuhn et al., 2005).

The process of fermentation is carried out by microorganisms through the secretion of enzymes, such as proteases, amylases and lipases which change the polysaccharides, proteins and lipids to nontoxic products attractive to the human consumer (Steinkraus, 1997). Production of many vitamins and minerals are increased during kefir fermentation and lactic acid bacteria in kefir have beneficial effects such as management obesity (Ikeda et al., 2014).

This study was carried out to investigate the antiboisity effects of fermented Kefir and germinated cereals mixed with fermented Kefir on high fat diet induced obese rats by measuring nutritional and serum lipids indicators, some biochemical parameters as leptin, glucose, insulin and hormonal changes and antioxidant enzymes.

MATERIALS AND METHODS

Materials:

- Experimental cereals Whole wheat, barley, maize, millet, oat and skimmed milk were obtained from local market in
-Kefir grains were purchased from Agricultural Research Center, Giza, Egypt.

Methods:
The experimental cereals were immersed in water (1:5) for 6 hours then spread them in wet blotting paper on a flat surface at room temperature for 4 days and continue in spraying them with water every 12 h. At the end of germination process, wheat was dried in air oven at 45 °C then grinding into powder.

Fifty gram of kefir grains was added to 1000 ml of skimmed milk which was previously boiled and cooled to 37 °C and incubated for 16 h in an aerobic conditions and with ventilation every four hours to stimulate yeast growth (Celso et al., 2005). After incubation, pasteurized brine (brine preparation: 5 g of salt dissolved in 650 ml of water and pasteurized at 90 °C for15 min) was added to coagulate kefir and mixed together, thoroughly in order to produce a functional beverage free ethanol and the count of lactic acid bacillus will also increase accordance with industrial production of kefir in Iran. Kefir beverage is stored at 4°C until use (Tayyebeh et al., 2017).

Formula 1 composed wheat, barley, maize and millet mixture powder (70:10:10:10 %w/w) melt in 200ml kefir while formula 2 composed of wheat, barley, maize and oat mixture powder (70:10:10:10 %w/w) melt in 200ml kefir.

Experimental animals:
Twenty five albino male rats of Sprague - Dawley strain, weighted 75 ± 3g, were obtained from Faculty of Pharmacy, Mansoura University, Egypt. Rats were fed on standard diet (NRC, 1995) and kept for a week for adaption. Food and water were introduced. Five rats were received thebasal diet daily as a negativegroup. The rest rats were received high saturated fats(34%) in diet for 56 days to become obese rats. Obesity was confirmed by elevation of serum lipid profile and body weight (Wang et al., 2010). The obese rats were classified into the following:
- Control positive group that obese rats were fed on high fat diet, given 1 ml of normal saline daily using stomach tube for four weeks.
- Kefir group that obese rats fed on high fat diet supplemented with kefir at dose of 4ml /rat/day by oral administration for four weeks.

Table 1. Nutritional indicators of experimental rats fed on cereals fortified with fermented kefir.

<table>
<thead>
<tr>
<th>Groups variables</th>
<th>Initial weight (g)</th>
<th>Final Weight (g)</th>
<th>Weight Gain (g)</th>
<th>Weight Gain %</th>
<th>Daily Food intake</th>
<th>F E R</th>
<th>Daily protein intake</th>
<th>P E R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (+ve)</td>
<td>b</td>
<td>bc</td>
<td>b</td>
<td>b</td>
<td>b, c</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>152.01±</td>
<td>169.80±</td>
<td>17.80±</td>
<td>10.53±</td>
<td>±1.17</td>
<td>±1.2 ±</td>
<td>±0.004</td>
<td>±0.006</td>
</tr>
<tr>
<td>Control (-ve)</td>
<td>a**</td>
<td>a**</td>
<td>a**</td>
<td>a**</td>
<td>a**</td>
<td>a**</td>
<td>a**</td>
<td>a**</td>
</tr>
<tr>
<td></td>
<td>196.01±</td>
<td>217.42±</td>
<td>21.46±</td>
<td>14.40±</td>
<td>±2.43</td>
<td>±3.15</td>
<td>±0.003</td>
<td>±0.007</td>
</tr>
<tr>
<td>kefir</td>
<td>a**</td>
<td>b</td>
<td>c**</td>
<td>d</td>
<td>bc</td>
<td>a***</td>
<td>b**</td>
<td>a**</td>
</tr>
<tr>
<td></td>
<td>200.48±</td>
<td>179.01±</td>
<td>21.48±</td>
<td>10.61±</td>
<td>0.038</td>
<td>4.02</td>
<td>0.190</td>
<td></td>
</tr>
<tr>
<td></td>
<td>±1.63±</td>
<td>±3.63±</td>
<td>±1.70±</td>
<td>±1.17±</td>
<td>±2.02±</td>
<td>±0.0007</td>
<td>±0.004</td>
<td>±0.004</td>
</tr>
<tr>
<td>Formula 1</td>
<td>a**</td>
<td>b</td>
<td>d</td>
<td>d</td>
<td>bc</td>
<td>c**</td>
<td>b**</td>
<td>c**</td>
</tr>
<tr>
<td></td>
<td>197.66±</td>
<td>179.28±</td>
<td>18.38±</td>
<td>10.61±</td>
<td>0.032</td>
<td>4.05</td>
<td>0.162</td>
<td></td>
</tr>
<tr>
<td></td>
<td>±1.14±</td>
<td>±4.01±</td>
<td>±2.70±</td>
<td>±1.76±</td>
<td>±1.18±</td>
<td>±0.0002</td>
<td>±0.005</td>
<td>±0.002</td>
</tr>
<tr>
<td>Formula 2</td>
<td>a**</td>
<td>b</td>
<td>c**</td>
<td>bc</td>
<td>c**</td>
<td>c</td>
<td>c**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>182.49±</td>
<td>170.13±</td>
<td>12.36±</td>
<td>±7.26±</td>
<td>±1.62</td>
<td>±0.05</td>
<td>±1.34±</td>
<td>±0.08</td>
</tr>
<tr>
<td></td>
<td>±5.62</td>
<td>±14.33</td>
<td>±6.02</td>
<td>±1.17±</td>
<td>±0.0000</td>
<td>±0.005</td>
<td>±0.005</td>
<td></td>
</tr>
</tbody>
</table>

Significant with control group *P< 0.05 **P< 0.01 ***P<0.001.
Mean values in each column having different letter (a, b, c) are significantly different at P< 0.05.

(-ve) control negative group, (+ve) control positive group, (kefir) kefir group (formula 1) germinated cereals wheat, barley, maize and millet mixed with kefir, (formula 2) germinated cereal wheat, barley, maize and oat mixed with kefir.
In agreement with these results, Kefir is nice beverage for individuals whose seeks to obtain ideal weight. This are important for athletes, not only that but also good for small babies and preschoolers. It considered safe beverage against diseases and quick weight gain. Many researchers have been done on it to assure healthy side effects. Viscosity-forming capacity of Oat has been suggested to be crucial for its effect on satiety-related attributes (Slavin and Green, 2007). Millet cereals have an ability to prevent massive body weight gain to maintain blood pressure, and decrease the glucose and lipid levels. Kefir is a fermented beverage; it has many healthy effects, such as calcium absorption and positive effects on testosterone levels.

The obtained results were agreed with those reported by many authors. Diets contain oat improved hypercholesterolemia by increasing the excretions of fecal bile acids, and this improvement due to β-glucan and lipids and proteins. Oat proteins decreased serum cholesterol and LDLc contents due to their low Lysine/Arginine and Methionin/Glycine ratio. Oleic acid, linoleic, vitamin E and plant sterols accounted for the hypocholesterolemic effects of oat lipids (Lina et al., 2014). Millet cereals have hypolipidemic effects due to contain high levels of complex carbohydrates, fibre and resistant starch. Someof millet benefits are attributed to polyphenol and fiber contents. It also contains calcium and has anti atherosclerogenic effects (Mathanghi and Sudha 2012 and Thilagavathi and Kanchana 2017). On the other side, Glore et al. (1994) Anderson (2003) and Saka et al. (2016) emphasized those there benefits for lowering lipids with oats and oat based products have been reported in animal and human studies. Review of Conor et al., (2019) examines and assesses that Kefir contain microorganisms that have been associated with more health benefits; such as cholesterol metabolism. Results obtained from recent studies by kui and his colleagues (2020), the summary of these findings is that fermented foods intake has a relationship with a lower risk of cardiovascular diseases.

Our data in table (2) showed that rats fed on high fat diet only (control +ve group) exhibited significantly higher TC, TG, LDLc, VLDLc and atherogenic indexes (LDLc/HDLc & CHO/HDLc) and lower HDLc compared with control –ve group. However, the administration of kefir, formula1 and formula 2 could reduce the elevated parameters to near normal levels and increase HDLc compared with control +ve group.

Table 2. Lipids profile and atherogenic index of rats fed on cereals fortified with fermented kefir consumption.

<table>
<thead>
<tr>
<th>Groups variables</th>
<th>T.C (mg/dl)</th>
<th>T.G (mg/dl)</th>
<th>HDLc (mg/dl)</th>
<th>LDLc (mg/dl)</th>
<th>VLDLc (mg/dl)</th>
<th>LDLc/HDLc</th>
<th>CHO/HDLc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (–ve)</td>
<td>b ±2.06</td>
<td>a ±1.54</td>
<td>d ±10.1</td>
<td>a ±4.47</td>
<td>a ±0.92</td>
<td>c ±0.11</td>
<td>d ±1.08</td>
</tr>
<tr>
<td>Control (+ve)</td>
<td>a ***</td>
<td>a ***</td>
<td>d ***</td>
<td>a</td>
<td>a **</td>
<td>a ***</td>
<td>a ***</td>
</tr>
<tr>
<td>kefir</td>
<td>b ±0.02</td>
<td>b ±0.18</td>
<td>b ±0.50</td>
<td>±5.27</td>
<td>±1.39</td>
<td>±0.06</td>
<td>±0.06</td>
</tr>
<tr>
<td>FORMULA1</td>
<td>b ±0.68</td>
<td>b ±0.16</td>
<td>c ***</td>
<td>±2.41</td>
<td>±0.41</td>
<td>±0.43</td>
<td>±0.13</td>
</tr>
<tr>
<td>FORMULA2</td>
<td>b ±0.32</td>
<td>a ±0.41</td>
<td>±0.87</td>
<td>±0.68</td>
<td>±0.87</td>
<td>±0.14</td>
<td>±0.13</td>
</tr>
</tbody>
</table>

Significant with control group *P< 0.05 **P< 0.01 ***P< 0.001.

Means values in each column having different letter (a, b, c.) are significantly different at P< 0.05 (–ve) control negative group, (+ve) control positive group, (kefir) kefir group (formula 1) germinated cereals wheat, barley, maize and millet mixed with kefir, (formula 2) germinated cereal wheat, barley, maize and oat mixed with kefir.

In our study, the blood leptin, glucose, insulin resistance and progestgerone levels were increased but insulin and testosterone were decreased by consumption of high fat diet compared with control –ve group. It is noticeable that consumption of kefir significantly reduced the serum leptin, glucose, insulin resistance and progestgerone levels but insulin and testosterone levels increased compared to control +ve group consumption of formula 1 could lower serum leptin and insulin resistance and elevate, insulin progestgerone and testosterone levels while consumption of formula 2 had ability to lower serum leptin, glucose and insulin resistance and increase progestgerone and testosterone hormones compared to control +ve group (Table 3).

It is well known that leptin is a key fat-derived regulator of appetite and energy expenditure, normally correlate positively with the extent of the TG stores in adipocytes (Friedman and Halaas 1998). Kefir was used as a functional food for diabetes therapy through maintaining plasma glucose levels, lowering insulin resistant, increasing antioxidant enzymes activity and improving in pancreatic β-cells (Rosa, 2014 and Nurliyani 2015). Millet are high in resistant starch, these products release sugar slowly in the blood and also decrease the glucose absorption. The slow digestion of resistant starch has implications in controlling glucose release. Millet cereals have hypoglycemic effects due to fibre and complex carbohydrates (Nugent 2005 and Thilagavathi and Kanchana 2017). Oat is abundant in β-glucan, which could lower the glycemic index and control of postprandial glycemias (Kalra and Jood 2000 and Ruiling et al., 2011). Rats fed on fermented food showed an ameliorative effect in testosterone level (Mona et al., 2014). Kefir is a beverage made by kefir cereals that change milk proteins into many peptides with healthy effects, such as calcium absorption and positive effects on testosterone levels.
Table 3. Leptin, insulin, glucose, insulin resistant and two hormones testosterone and progesterone of rats fed on cereals fortified with fermented kefir consumption.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Leptin (ng/ml)</th>
<th>Insulin (mg/dl)</th>
<th>Glucose (mg/dl)</th>
<th>Insulin resistant (µU/mL)</th>
<th>Testosterone (ng/ml)</th>
<th>Progesterone (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (-ve)</td>
<td>a 2.03±0.40</td>
<td>b 3.36±0.40</td>
<td>c 136.00±6.76</td>
<td>d 0.12±0.03</td>
<td>a 3.25±0.18</td>
<td>c 1.20±0.02</td>
</tr>
<tr>
<td>Control (+ve)</td>
<td>a *** c ***</td>
<td>b *** d ***</td>
<td>a ***</td>
<td>d *** b ***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kefir</td>
<td>c 1.23±0.76</td>
<td>d 2.86±0.40</td>
<td>b 136.20±6.40</td>
<td>a 0.95±0.15</td>
<td>b 2.91±0.45</td>
<td>a 1.98±0.05</td>
</tr>
<tr>
<td>Formula 1</td>
<td>c 1.95±0.45</td>
<td>d 2.98±0.40</td>
<td>b 147.40±6.11</td>
<td>a 0.86±0.12</td>
<td>b 2.27±0.45</td>
<td>a 5.49±0.05</td>
</tr>
<tr>
<td>Formula 2</td>
<td>c 3.28±0.78</td>
<td>d 3.12±0.40</td>
<td>b 137.20±4.43</td>
<td>a 0.45±0.11</td>
<td>b 2.02±0.40</td>
<td>a 5.28±0.03</td>
</tr>
</tbody>
</table>

Significant with control group *P< 0.05 ** P< 0.01 ***P<0.001.

Mean values in each column having different letter (a, b, c, d) are significantly different at P<0.05.(control group) kefir group (formula 1) germinated cereals wheat, barley, maize and oat mixed with kefir, (formula 2) germinated cereal wheat, barley, maize and oat mixed with kefir

REFERENCES

Ahmed, M.; Mona, A.A.; Moustafa, M.Z.; and Abdel-salam. (2013). The role of fermented milk containing probiotic, dandelion as prebiotic or their combination on serum metabolites, enzymes, testosterone and testicular histopathology of arsenic-intoxicated male rats. Journal of basic & applied sciences. 10, 492-03.

Lipids in Health and Disease, 13:182.

125.