PRODUCTION OF SNACKS DIGESTIBILITY PROTEIN FROM BARLEY AND TOMATO WASTES.
Okba M. A.; E. A. Abdelrasoul and M. A. Gomaa.
Food Technology Res. Inst., ARC, Egypt

ABSTRACT

Prepared mixtures of barley flour with different ratios of tomato wastes from the tomato industry are (zero, 5, 10, 15 and 20%) to take advantage of their high content from fiber, antioxidants, and minerals, as well as to raise their economic value, for the production of snacks using extrusion at 180 °C and 200 rpm. Also, we studied the effect of these ratios on the chemical composition, phenolic compounds and physical properties (expansion, bulk density, water absorption, hardness, breaking strength, and color) of products as well as, organoleptic properties. The study showed that increasing the ratio of tomato wastes decreased each of the protein ratio, β-glucan and increased each of fiber ratio and mineral elements. Total phenolic compounds also increased by increasing the proportion of waste but decreased by extrusion. Also, affected the increase a ratio of tomato wastes on the physical properties of the outputs extrusion process, where decreased each of expansion ratio and water absorption. On contrast that, increased each of hardness, hardness, bulk density and color values. Sensory evaluation showed that the best ratio addition of tomato wastes were 15% and 20%. These results indicate that possibility of using tomato wastes mixing with barley flour of production snacks with high nutritional value.

Keywords: Production; Snacks; Extrusion; Barley; Tomato wastes.

INTRODUCTION

Extrusion cooking is an important and popular food processing technique classified as a high temperature/short time process to produce fiber-rich products (Gaosong and Vasanthan, 2000 and Vasanthan, et al. 2002). In the extruder, the food mix is thermo mechanically cooked to high temperature, pressure and shear stress, which are generated in the screw-barrel assembly. The cooked melt is then texturized and shaped in the die (Arhaliass et al. 2003). The thermo mechanical action during extrusion brings about gelatinization of starch, denaturation of protein and inactivation of enzymes, microbes and many anti-nutritional factors; all this occurs in a shear environment, resulting in a plasticized continuous mass (Bhattacharya and Prakash, 1994).

Barley is the fourth most important cereal in the world in terms of total production after wheat, rice and corn (Jadhav et al. 1998), only a small amount of barley is used for human consumption. Taste and appearance factors along with its poor baking quality have limited the use of barley in human foods. However, in recent years there has been a growing research interest for the utilization of barley in a wide range of food applications (Bhatty, 1999; Bilgi and Celik, 2004 and Koksel et al. 1999). The mixed linkage (1→3)(1→4)-β-D-glucans (β-glucan) from the endosperm of cereal grains are valuable industrial hydrocolloids and have been shown to be important, physiologically active dietary fibre components (Wood, 2001). β-
glucans are water-soluble, linear, high molecular-weight polysaccharides (Autio et al. 1987; Autio et al. 1992 and Doublier and Wood, 1995). They give viscous, shear thinning solutions even at low concentrations. The viscosity is related to the molecular weight and is strongly dependent on concentration (Autio, 1995 and Wood et al. 2000).

Barley β-glucan has shown to have cholesterol-lowering effects in humans (Newman et al., 1989) rats (Hecker et al., 1998) and chicks (Wang et al., 1992).

Proposed mechanisms of action are, e.g. increased excretion of cholesterol (Lia et al. 1995) and stimulation of the reverse cholesterol transport (Bourdon et al., 1999). In a study with golden hamsters. Delaney et al., (2003) concluded that the cholesterol lowering effect of β-glucan is more or less similar whether it is isolated from oat or barley. Barley β-glucan has been shown to lower also postprandial glucose and insulin response in humans (Hallfrisch et al., 2003).

Tomato (Lycopersicon esculentum) is one of the most popular vegetables and an integral part of human diet worldwide. Significant amounts are consumed in the form of processed products such as juice, paste, puree, ketchup, sauce and salsa.

During tomato, processing a by-product, known as tomato pomace, is generated. This by-product represents, at most, 4% of the fruit weight (Del Valle et al., 2006).

Tomato pomace consists of the dried and crushed skins and seeds of the fruit (Tadeu-Pontes et al., 1996). The skin, important component of pomace, is source of lycopene. Lycopene is an excellent natural food color and serves as a functional ingredient with important health benefits beyond basic nutrition (Kaur et al. 2005). A diet rich in lycopene is related to a decreased risk of certain cancers, particularly cancers of the digestive tract, prostate cancer and pancreatic cancer due to protective effect of lycopene against oxidative damage (Johnson, 2000). It also was found that tomato pomace significantly reduced cholesterol level in liver and heart by 15% and 18%, respectively (Bobek et al. 1998). The use of tomato processing by-products could provide gaining valuable substances and at the same time reduce the waste disposal problem. In recent years, there is an increasing demand for conversion of fruit and vegetable wastes into useful products. The primary motivation is to minimize environmental impact of these by-products and to utilize valuable constituents that remain, such as lycopene and dietary fiber. One viable method for utilization of fruit and vegetable by-products into useful products is extrusion processing due to its versatility, high productivity, relative low cost, energy efficiency and lack of effluents. Successful incorporation of tomato pomace into extruded products that deliver physiologically active components represents a major opportunity for food processors providing the consumer a healthy barley-based product to choose from which is currently lacking in the marketplace (Aylin et al., 2008).

The objective of this research was to investigate process ability of production of snacks digestibility protein from barley and tomato waste. The effect of the variables such as tomato skin content, extrusion die temperature
and screw speed on system parameters and physical properties of extrudates were evaluated by using response surface methodology. Sensory properties were determined in terms of color, texture, taste, off-odor and overall acceptability for selected extrudate samples.

MATERIALS AND METHODS

Materials:
Hull-less whole barley grain (Hordeum apertum – Giza 130) samples used in this study were obtained from Barley Research Department, Sakha Agricultural Research Station, (A R C), Egypt. Tomato wastes (Lycopersicon esculentum) (processing by-product) was obtained from the Company Kaha for Preserved Foods located in Kaha, Qliopih Governorate, Egypt.

Methods:
Sample preparation:
Barley flour was prepared using a Super Mill 1500 (Newport Scientific, Australia). Barley flour was stored at 4 °C until use. Tomato wastes, obtained from the paste line, had a moisture content of 46.4% (w.b.). It was dried at 50 °C overnight in a forced-air drier (Model # R-4, Commercial Dehydrator System, Inc., Eugene, OR, USA). The dried tomato wastes was coarsely ground and passed on sieve with size of 20 mesh. Then, the sieved tomato wastes was finely ground and stored in polyethylene bags at -20 ºC for further usage. The moisture content of dried tomato wastes was 2.43 ±0.2% (w.b.). Blends were prepared by mixing barley flour and tomato wastes in the ratios of 100:0, 95:5, 90:10, 85:15 and 80:20 on a dry-to-dry weight basis. The blended samples were conditioned to 21–22% (w.b.) moisture by spraying with a calculated amount of water and mixing continuously at medium speed in a mixer (Model F-30T, Blakeslee, Chicago, IL, USA) (Aylin et al., 2008). The samples were put in buckets and stored at 4 °C overnight. The feed material was then allowed 3 hours to equilibrate at room temperature prior to extrusion. This preconditioning procedure was employed to ensure uniform mixing and hydration and to minimize variability in the state of the feed material. Moisture content of samples was determined by halogen moisture analyzer (Model HR83 and HR83P, Mettler-Toledo GmbH, Greifensee, Switzerland) at 105 °C.

Extrusion cooking:
All products were made using a Clextral BC21 twin-screw laboratory scale extruder (Clextral, Firminy Cedex, France). The screw diameter, (L/D) ratio and die diameter was 25 mm 16 and 6 mm, respectively. The feed rate (20 kg/h) and screw speed (200 rpm) were kept constant. The extrusion was carried out at 180 °C, the temperature of different barrel zones was 50, 100, 140 and 180 °C. The terminal section was heated by an induction heating belt and the feeding section of barrel was cooled with running water (Aylin et al., 2008).
Proximate analysis:

Moisture, ash, lipid and protein contents were determined according to the standard AACC (1995) procedures. The fiber contents (total, soluble and insoluble fiber) were measured using the Megazyme total dietary fiber analysis kit (Prosky et al. 1985). β-glucan content was determined using the mixed-linkage β-glucan assay procedure kit of Megazyme Ltd. (McCleary and Glennie, 1985).

Total phenolic content (TPC):

The total phenolic content (TPC) was determined according the Folin–Ciocalteu spectrophotometric method (Sharma and Gujral, 2010). Samples (200 mg) were extracted with 4 ml acidified methanol (HCl/methanol/water, 1:80:10, v/v/v) at room temperature (25 ºC) for 2 h. An aliquot of extract (200 μl) was added to 1.5 ml freshly diluted (10-fold) Folin–Ciocalteu reagent. The mixture was allowed to equilibrate for 5 min and then mixed with 1.5 ml of sodium carbonate solution (60 g/l). After incubation at room temperature (25 ºC) for 90 min, the absorbance of the mixture was read at 725 nm (Shimadzu, UV-1800, Japan). Acidified methanol was used as a blank. The results were expressed as l g of ferulic acid equivalents (FAE) per gram of sample.

Physical properties:

Expansion: Extrudate expansion was determined as sectional expansion. A digital caliper was used to measure the width and thickness of extrudates. The average of ten measurements of extrudate was used to calculate sectional expansion index (SEI). SEI was calculated by dividing the cross-section area of extrudate by the cross section area of the slit die as given in Eq. (1) (Alvarez-Martinez et al. 1998):

\[
SEI = \frac{S_e}{S_d} = \frac{W_e \times H_e}{W_d \times H_d}
\]

where \(S_e \) and \(S_d \) are the cross-sectional areas of the extrudate and the die. \(W_e \) and \(H_e \) are the width and thickness of the extrudate and \(W_d \) and \(H_d \) are the width and thickness of the die, respectively.

Bulk density: A volumetric displacement method by using glass beads with a diameter in the range of 1.00–1.18 mm as a displacement medium was used to determine bulk density of extrudates (Hwang and Hayakawa, 1980). Bulk densities (PD) of the extrudates were calculated by using Eq. (2):

\[
P_d = \frac{W_{ex}}{W_{gb}} \times P_{gb}
\]

where \(P_{ch} \) is the bulk density using glass bead displacement method (g/cm3); \(W_{ex} \) is the extrudate mass (g); \(W_{gb} \) is the mass of glass beads displaced (g) and \(P_{gb} \) is the bulk density of the glass beads (g/cm3). The values were average of three measurements.

Water absorption and solubility indices: The water absorption index (WAI) is the weight of gel obtained per gram of dry ground sample. The WAI of extrudates was determined according to the AACC methods, (1995). The ground extrudate was suspended in water at room temperature. After standing for 10 min, gently stirred during this period, samples were
centrifuged for 15 min at 1000 x g (Allegra™ 6 Centrifuge, Beckman Coulter Inc., Palo Alto, CA, USA). The supernatant was decanted and WAI was calculated as the weight of sediment obtained after removal of the supernatant per unit weight of original solids as dry basis. Three determinations were conducted for each extrudate.

Texture: The hardness (H) and breaking strength (BS) of samples were measured with a TA-XT2i Texture Analyzer (Texture Technologies Corp., Scarsdale, NY, USA). Hardness (as N) was determined by measuring the maximum force required to break the extruded samples using three point break test (Singh et al., 1994 and Mathew et al., 1999) with a sharp-bladed probe (55 mm wide, 40 mm high, 9 mm thick). BS (as N/mm²) was determined by dividing the maximum force by cross-sectional area of the product. Extrudate sample was cut into ~42 mm length and a single piece was placed on the two support bars perpendicular to the probe.

The width (20.3–22.0 mm) and height (2.5–3.3 mm) of samples were changing according to the extrusion processing. The distance between two supports was 22 mm and the probe was lowered on to the extrudate at a pretest speed of 1 mm/s and test speed of 2 mm/s. A force-time curve was recorded and analyzed by Texture Exponent 32 software program (version 3.0). Six measurements were performed on each sample.

Color: HunterLab LabScan II (Hunter Associates Laboratory, Inc., Reston, VA, USA) was used to determine color values of the raw materials and ground extruded in terms of the Hunter L, a and b. The L value represents the lightness/darkness of the sample and ranges between 0 for black to 100 for white sample. The a and b values represent redness/greenness and yellowness/blueness of sample. The measuring head was equipped with 51 mm diameter viewing port and used the system of diffuse illumination with 10° viewing geometry. The illuminant was D65. The extrudates were ground in a laboratory grinder and passed through a 60 mesh sieve prior to color analysis (Mensah, 1997). For each sample, three measurements were taken and averaged. The total color change (ΔE) was calculated as:

\[
\Delta E = \sqrt{(L - L_0)^2 + (b - b_0)^2 + (a - a_0)^2}
\]

where the subscript 'o' indicates initial color values of the raw material.

Sensory evaluation:
A semi-trained panel of 28 panelists evaluated the extruded snacks for color, texture, overall acceptability, taste and off-odor on a 7-point hedonic scale (from 1 = extremely dislike to 7= extremely like). Panelists rinsed their mouths with water after tasting each sample Rickard and Thompson, (1997).

Statistical analysis
Analysis of variance (ANOVA) was carried out using Microsoft Excel software and Fishers least significant difference (LSD) test was used to describe means with 95% (p < 0.05) confidence. The Pearson correlation coefficients were calculated by SPSS statistical software (SPSS Inc., Chicago, Illinois, USA) at a probability level of p < 0.05.
RESULTS AND DISCUSSION

Proximate analysis of the raw ingredients of extrudates:

The composition of the raw mixtures were shown in Table (1). It was observed that increasing the percentage of tomato wastes in the mixtures did not have a significant effect on the moisture content, while, led to significant decreasing of lipids from 2.25 to 1.16%, proteins from 14.27 to 11.47% and β-glucan from 4.91 to 3.58%. On the contrary, it was found that the percentage of ash, carbohydrates and fiber increased by increasing tomato waste in mixtures were from 1,89 to 2,76%, 69,88 to 72,68% and from 6,77 to 10,03%, respectively. These results are due to replacement barley flour by tomato wastes, which contain a high amount of fiber and minerals. Similar findings have been reported previously (Aylin et al., 2008 and Del Valle et al., 2006).

Table 1: Proximate analysis of the raw ingredients of extrudates (% as dry weight).

<table>
<thead>
<tr>
<th>Mixtures</th>
<th>Moisture</th>
<th>lipids</th>
<th>Protein</th>
<th>Ash</th>
<th>Carbohydrates</th>
<th>Fiber</th>
<th>β-glucan</th>
</tr>
</thead>
<tbody>
<tr>
<td>100:00</td>
<td>11.71</td>
<td>2.25</td>
<td>14.27</td>
<td>1.89</td>
<td>69.88</td>
<td>6.77</td>
<td>4.91</td>
</tr>
<tr>
<td>95:05</td>
<td>11.41</td>
<td>2.04</td>
<td>13.58</td>
<td>2.09</td>
<td>70.88</td>
<td>7.43</td>
<td>4.66</td>
</tr>
<tr>
<td>90:10</td>
<td>11.33</td>
<td>1.73</td>
<td>12.64</td>
<td>2.27</td>
<td>72.03</td>
<td>7.99</td>
<td>4.28</td>
</tr>
<tr>
<td>85:15</td>
<td>11.15</td>
<td>1.50</td>
<td>12.04</td>
<td>2.55</td>
<td>72.76</td>
<td>8.62</td>
<td>3.91</td>
</tr>
<tr>
<td>80:20</td>
<td>11.93</td>
<td>1.16</td>
<td>11.47</td>
<td>2.76</td>
<td>72.68</td>
<td>10.03</td>
<td>3.58</td>
</tr>
</tbody>
</table>

* (Barley flour: Tomato wastes).

Means with the same letter within a column are not significantly different by least significant difference (LSD) analysis (P> 0.05).

Effect of extrusion and mixing ratio on total phenolic content (TPC):

Total phenolic content of mixtures before and after extrusion were shown in Table (2). The total phenolic content in all the mixtures decreased significantly upon extrusion as compared to their corresponding control (unextruded) samples. These results are also consistent with previous study carried out by Delgado-Licon et al. (2009) on the extrusion of bean–corn mixture. The phenolic compounds are heat labile (Sharma and Gujral, 2010) and are less resistant to the heat, and heating over 80 °C may destroy or alter their nature (Zielinski et al., 2001). While, increasing 20% of tomato wastes led to the increase total phenolic content 1747 μg FAE/g for unextruded and 1901μg FAE/g for extruded. The differences in the total phenolic content can be attributed to differences in high content of antioxidants in tomato waste as lycopene. These results are also consistent with previous study carried out by (Madhujith and Shahidi, 2009; Sharma and Gujral, 2010) reported TPC value ranging from 2.63 to 4.51 mg of ferulic acid equivalents (FAE)/g in barley.
Table 2: Total phenolic content of mixtures before and after extrusion.

<table>
<thead>
<tr>
<th>Mixtures *</th>
<th>Total phenolic content (μg FAE/g)</th>
<th>Unextruded</th>
<th>Extruded</th>
</tr>
</thead>
<tbody>
<tr>
<td>100:00</td>
<td></td>
<td>3642<sup>a</sup></td>
<td>2561<sup>b</sup></td>
</tr>
<tr>
<td>95:05</td>
<td></td>
<td>4077<sup>a</sup></td>
<td>3112<sup>b</sup></td>
</tr>
<tr>
<td>90:10</td>
<td></td>
<td>4578<sup>a</sup></td>
<td>3560<sup>b</sup></td>
</tr>
<tr>
<td>85:15</td>
<td></td>
<td>4906<sup>a</sup></td>
<td>3942<sup>b</sup></td>
</tr>
<tr>
<td>80:20</td>
<td></td>
<td>5389<sup>a</sup></td>
<td>4462<sup>b</sup></td>
</tr>
</tbody>
</table>

* (Barley flour: Tomato wastes).
FAE = ferulic acid equivalents.

a, b, c, d and e superscripts are significantly (p < 0.05) different within a column for different extrudates and A and B superscripts are significantly (p < 0.05) different within a row for each extrudates.

Effect of mixing ratio on physical properties of extrudates:

Table (3) shown an effect the mixing ratio on physical properties of extrudates. Sectional Expansion Index (SEI) is an important physical attribute for the extruded snacks that greatly affects consumer acceptability. SEI of products ranged between 286.24% and 232.14%. As expected, incorporation of tomato wastes reduced the expansion values of up to 18.9% compared to the controls. Bulk densities (PD) of products varied between 112.22 and 289.32 kg/L. The density of the extruded products to which 20% of tomato waste was added, was about twice that of extruded products containing flours only due to the presence of sugars and soluble fiber in the tomato wastes that absorb moistures. The water absorption index (WAI) measures the volume occupied by the granule or starch polymer after swelling in excess water. While the water soluble index WSI determines the amount of free polysaccharide or polysaccharide released from the granule after addition of excess water (Sriburi and Hill, 2000). The WAI ranged from 7.54 to 6.01 g/g for the barley flour–tomato wastes extrudates. The WAI decreased significantly as the percentage of tomato wastes increased. This may be attributed to relative decrease in starch content with addition of tomato wastes and competition of absorption of water between wastes and available starch. This result is in agreement with those of (Artz et al., 1990). They reported a decrease in water holding capacity when the ratio of fiber/corn starch increased in extrusion of corn fiber and corn starch blend.

Table 3: Physical properties of extrudates.

<table>
<thead>
<tr>
<th>Mixtures *</th>
<th>SEI (%)</th>
<th>PD (kg/L)</th>
<th>WAI (g/g)</th>
<th>H (N)</th>
<th>BS (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100:00</td>
<td>286.24<sup>a</sup></td>
<td>112.22<sup>a</sup></td>
<td>7.54<sup>a</sup></td>
<td>5.71<sup>a</sup></td>
<td>0.305<sup>a</sup></td>
</tr>
<tr>
<td>95:05</td>
<td>275.13<sup>a</sup></td>
<td>167.39<sup>c</sup></td>
<td>7.14<sup>b</sup></td>
<td>10.46<sup>b</sup></td>
<td>0.540<sup>b</sup></td>
</tr>
<tr>
<td>90:10</td>
<td>260.82<sup>c</sup></td>
<td>204.27<sup>c</sup></td>
<td>6.75<sup>c</sup></td>
<td>14.98<sup>c</sup></td>
<td>0.783<sup>c</sup></td>
</tr>
<tr>
<td>85:15</td>
<td>245.44<sup>c</sup></td>
<td>248.44<sup>d</sup></td>
<td>6.44<sup>d</sup></td>
<td>19.23<sup>d</sup></td>
<td>1.012<sup>d</sup></td>
</tr>
<tr>
<td>80:20</td>
<td>232.14<sup>c</sup></td>
<td>289.32<sup>a</sup></td>
<td>6.01<sup>d</sup></td>
<td>23.31<sup>a</sup></td>
<td>1.245<sup>a</sup></td>
</tr>
</tbody>
</table>

Means with the same letter within a column are not significantly different by least significant difference (LSD) analysis (P> 0.05).

* (Barley flour: Tomato wastes).
SEI = sectional expansion index; PD = Bulk densities; WAI = water absorption index; H = hardness and BS = breaking strength.
Hardness (H) was obtained from the maximum force required to fracture the products by the Kramer shear cell. Hardness correlates with the bite hardness that could be expected from eating the product. Hardness varied between 5.71 and 23.31 N (Table 3) among our products. Products made with the flours alone were much less hard than that of tomato wastes (Table 3). Fiber interferes with air bubble formation and increases air cell wall thickness (Altan et al., 2008) resulting in a harder product.

During extrusion, it was noticed that the foam structure from products containing skin was much finer than that for the other products. Substituting starch for finely divided skin fiber also reduces the proportion of materials capable of forming a melt in the extruder and this would be expected to reduce the foam volume and increase hardness. The breaking strength (BS) results were in line with hardness results. The breaking strength of barley extrudates was in the range of 0.305–1.245 N/mm² (Table 3). The low value of breaking strength was found for barley extrudates that produced from alone barley flour. The higher Sectional Expansion Index (SEI) and the lower the bulk density, the lower hardness and breaking strength was found in our study. The results were in agreement with study of (Choudhury and Gautam, 1998).

Effect of mixing ratio on color parameters of raw and extrudates materials:

Color is an important quality factor directly related to the acceptability of food products, and is an important physical property to report for extrudate products.

Table 4 shows color parameters of raw materials and extrudates. The non-extruded blend of barley flour and tomato wastes with a percentage of 0, 5, 10, 15 and 20 tomato wastes had color values of the ranges: \(a^*\): 1.25–4.63; \(b^*\): 9.03–0.94 and \(L^*\): 45.93–64.60; whereas the barley flour–tomato wastes extrudates had color values of the ranges; \(a^*\): 3.81–6.54; \(b^*\): 16.73–1.78 and \(L^*\): 73.68–92.57 (Table 4). Among the color parameters, the \(L^*\) and \(a^*\) values showed marked changes due to addition of tomato wastes only. An increase in tomato wastes level decreased the \(b^*\) value of the samples and increased the \(a^*\) value of samples as expected due to the lycopene pigment in the tomato pomace (Table 4). Similar result was found by (Ilo and Berghofer, 1999).
Table 4: Color parameters of raw and extrudates materials.

<table>
<thead>
<tr>
<th>Raw mixtures (Barley flour: Tomato wastes)</th>
<th>Hunter color value</th>
<th>ΔE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>100:00</td>
<td>1.25b</td>
<td>9.03a</td>
</tr>
<tr>
<td>95:05</td>
<td>1.97d</td>
<td>6.01b</td>
</tr>
<tr>
<td>90:10</td>
<td>3.02c</td>
<td>3.91c</td>
</tr>
<tr>
<td>85:15</td>
<td>3.74b</td>
<td>2.05a</td>
</tr>
<tr>
<td>80:20</td>
<td>4.63a</td>
<td>0.94a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extrudates mixtures</th>
<th>a</th>
<th>b</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100:00</td>
<td>3.81e</td>
<td>16.73a</td>
<td>73.68e</td>
</tr>
<tr>
<td>95:05</td>
<td>4.51co</td>
<td>12.71b</td>
<td>78.41d</td>
</tr>
<tr>
<td>90:10</td>
<td>5.18c</td>
<td>8.91c</td>
<td>83.12c</td>
</tr>
<tr>
<td>85:15</td>
<td>5.85de</td>
<td>4.05a</td>
<td>87.54e</td>
</tr>
<tr>
<td>80:20</td>
<td>6.54b</td>
<td>1.78c</td>
<td>92.57a</td>
</tr>
</tbody>
</table>

a, redness, greenness; b, yellowness, blueness; L, whiteness and ΔE the total color change.

Table 5: Sensory evaluation scores of extrudates.

<table>
<thead>
<tr>
<th>Sensory properties</th>
<th>Extrudates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100:00</td>
</tr>
<tr>
<td>Color</td>
<td>3.43a</td>
</tr>
<tr>
<td>Texture</td>
<td>4.22bc</td>
</tr>
<tr>
<td>Taste</td>
<td>3.62bc</td>
</tr>
<tr>
<td>Off-odor</td>
<td>2.86c</td>
</tr>
<tr>
<td>Overall acceptability</td>
<td>4.23b</td>
</tr>
</tbody>
</table>

Means within raw with different superscripts are significantly different (P < 0.05).

Sensory evaluation:

Five extrudate samples were selected out of 20 extrudate samples with respect to textural property and different tomato wastes level for sensory evaluation. The mean values of sensory panel ratings of extrudates are presented in Table 5.

Extrudates with different level of tomato wastes had better score than that of extrudate with 0%. Extrudate with 15% tomato wastes had the highest level of acceptance for color. Extrudates 10% and 15% had higher preference values for the parameter of texture. The overall acceptability of the barley flour and tomato wastes extrudate ranged lowest (4.23) in extrudate zero and highest (5.87) in extrudate15% (Table 5). These results were agreement with Altn et al., (2008).

Table 5: Sensory evaluation scores of extrudates.

<table>
<thead>
<tr>
<th>Sensory properties</th>
<th>Extrudates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100:00</td>
</tr>
<tr>
<td>Color</td>
<td>3.43a</td>
</tr>
<tr>
<td>Texture</td>
<td>4.22bc</td>
</tr>
<tr>
<td>Taste</td>
<td>3.62bc</td>
</tr>
<tr>
<td>Off-odor</td>
<td>2.86c</td>
</tr>
<tr>
<td>Overall acceptability</td>
<td>4.23b</td>
</tr>
</tbody>
</table>

Means within raw with different superscripts are significantly different (P < 0.05).

Conclusion

The system parameters and product responses were found to be most dependent on tomato wastes level. The results showed that varying levels of tomato wastes could be incorporated into an extruded barley snack.
depending on the desired texture of the final product. Extrudates with 15% and 20% tomato wastes levels extruded at 180 °C and 200 rpm had higher preference levels for parameters of color, texture, taste and overall acceptability. Such extrusion would also provide another avenue for tomato wastes utilization.

REFERENCES

